2 research outputs found

    Research on nonlinear and quantum optics at the photonics and quantum information group of the University of Valladolid

    Get PDF
    We outline the main research lines in Nonlinear and Quantum Optics of the Group of Photonics and Quantum Information at the University of Valladolid. These works focus on Optical Solitons, Quantum Information using Photonic Technologies and the development of new materials for Nonlinar Optics. The investigations on optical solitons cover both temporal solitons in dispersion managed fiber links and nonparaxial spatial solitons as described by the Nonlinear Helmholtz Equation. Within the Quantum Information research lines of the group, the studies address new photonic schemes for quantum computation and the multiplexing of quantum data. The investigations of the group are, to a large extent, based on intensive and parallel computations. Some associated numerical techniques for the development of the activities described are briefly sketched

    Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer

    No full text
    Temporal cavity solitons are packets of light persisting in a continuously driven nonlinear resonator. They are robust attracting states, readily excited through a phase-insensitive and wavelength-insensitive process. As such, they constitute an ideal support for bits in an optical buffer that would seamlessly combine three critical telecommunication functions, namely all-optical storage, all-optical reshaping and wavelength conversion. Here, with standard silica optical fibres, we report the first experimental observation of temporal cavity solitons. The cavity solitons are 4 ps long and are used to demonstrate storage of a data stream for more than a second. We also observe interactions of close cavity solitons, revealing for our set-up a potential capacity of up to 45,000 bits at 25Gbit s-1. More fundamentally, cavity solitons are localized dissipative structures. Therefore, given that silica exhibits a pure instantaneous Kerr nonlinearity, our experiment constitutes one of the simplest examples of self-organization phenomena in nonlinear optics. © 2010 Macmillan Publishers Limited. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore